Занимался вчера созданием нейросетей под руководством ChatGPT. По итогам я имею сказать вот что.
В целом — впечатляет. Даёт не самый плохой код на Питоне для создания нейросети на TensorFlow, что характерно — используя keras. Практически то же самое, что я сам рисовал четыре года назад.
Только в этот раз я замахнулся пошЫрше и решил нейросети скормить csv с “финансовыми транзакциями”. Внутри csv было одиннадцать колонок, десять просто с числами, а одиннадцатая — с довольно сложным вычислением из данных, находящихся в шести колонках (сложение двух дробей, вычисление 10% от полученного, и складывание с ещё двумя колонками). Четыре оставшиеся колонки не делали ничего.
Модель делал пятислойную, сто нейронов в четырёх слоях, один нейрон в выходном слое (это уже не ЧатЖПТ предлагал, это уже я сам). Наверное, это даже избыточно сложная модель.
Сделал два csv файла, один с 200 строками — это был тренировочное множество, и второй — всего с десятью. Я хотел посмотреть, сможет ли нейросеть распознать, какая именно зависимость существует в одиннадцатой колонке, и сможет ли она предсказать данные, полученные таким образом.
Скажу сразу, всё получилось. Конечно, математика на нейросетях довольно неаккуратна, но после 5000 эпох тренировки она смогла предугадывать значения с точностью, не выходящей за рамки 5%. Планирую показать результат начальнику, контора сильно озаботилась встраиванием ИИ в продукцию.
Но помимо этого, у меня возникли небольшые сложности, и возникли они именно от применения ИИ.
Во-первых, ЧатЖПТ нередко даёт код для Питоновских библиотек, который уже является устаревшим (deprecated). Например, свойство pandas.DataFrame.iloc — вытаскивание индивидуальных колонок из pandas.DataFrame.
Во-вторых, ЧатЖПТ создаёт в коде баги. Например, вместо десяти строк в тестовом наборе данных у меня почему-то считывались только девять. Разговор шёл примерно вот так:
–А у меня вместо десяти ожидаемых строк только девять.
–Может, данные кривые? Вот как их надо нормализировать.
–Данные нормальные, но считывается только девять строк вместо десяти. Первая строка проглатывается.
–Не должна. Вот код, как правильно считывать csv через pandas.read_csv
–Я этот код и использую, но первой строки нет.
–Ну, правильно, потому что по умолчанию первая строка считывается в имена колонок. В pandas.read_csv надо ставить параметр header=None, чтобы так не происходило.
–А чо сразу-то не сказал?
–Извиняюсь.
Но в целом (в целом) — впечатляет, да. Далеко не с каждым человеком я на эту тему могу поговорить, более того, не каждый сразу “на гора” выдаст работающий (более-менее) код. Ошибается иногда? Ну да, ошибается. Покажите мне человека, который не ошибается, и я покажу вам лентяя, который никогда ничего не делает. Тем не менее, лентяю в способности рассуждать почему-то не отказывают, а искуственному интеллекту — таки да. Неправильно это, ИМХО. ИИ вполне способен на рассуждения.