Турецкий

В Ноябре сего года у меня намечается совсем маленькая, на три дня, поездка в Турцию. Немного учу турецкий язык: как показывает опыт, если местные видят, что ты честно пытаешься говорить на их языке, отношение сразу сильно меняется в положительную сторону.

Турецкий язык, конечно, сильно не похож на языки, с которыми я ранее был знаком. Умляуты я, конечно, раньше видел, когда учил немецкий. А вот с седильями (Ç, Ş) сталкиваюсь впервые. Бреве, сиречь кратку, я, конечно же, уже использовал — в русском Й, но бреве над согласными, помимо чешской Č, раньше не наблюдал. Ну, и наличие как ı, без точки, и i сильно прикалывает. Некоторые слова забодаесся читать со всеми этими прибамбасами, хотя в целом норм, это вам не слова-паззлы в английском, типа “Leicester” (читается как “Лестер”).

Я уж не говорю про ирландский!! Например, распространённое ирландское женское имя Siobhan это никакая не “Сиобхан”, а вообще “Шивон”. А Saoirse — это “Сирша”. Ага, знай наших.

Но! Удивило меня всё же не это, а какое количество тюркизмов существует в русском языке. И некоторые турецкие слова отсюда понятны интуитивно — через русский. Сразу видно, как долго культуры контактировали и друг друга перекрёстно опыляли, натурально заклятые друзья, frenemies 🙂

Вот в русском языке есть слово “главный” или “глава”, например, “глава городской администрации” — высшее должностное лицо. Отсюда же — “главарь”. Оно понятно, почему вот так — начальник есть голова всей организации, без головы никуда. В английском тоже в том же смысле используется слово “голова”, например, “headmaster” это директор школы.

Так вот “начальник”, “главный”, “министр”, “управляющий” и подобное в турецком языке называется сразу же интуитивно понятным словом: БАШКАН (BAŞKAN). И всё незамедлительно кристально ясно.

Про копирастов (матерное)

В посте будет мат, ибо выбесили.

Пиратство — это нехорошо, и люди должны быть вознаграждены за свой труд. Книги я покупаю довольно часто, в основном электронные. Иногда, чтобы понять, стоит ли покупать книгу, я знакомлюсь с ней сначала через пиратский сайт https://libgen.is/. Если стоит, то без всяких проблем её покупаю.

А недавно я узнал, что копирасты пытаются засудить этот сайт. Если бы это сделали отдельные авторы — я бы понял, и отнёсся с сочувствием. Но это сделали не авторы, а издатели, в основном учебников. А учебники в США — это, блядь, не просто так книги. Это самый настоящий рэкет.

Среди моих читателей, наверное, немного людей, получивших бакалавра или выше в США, поэтому опишу навскидку, какая — в отдельных моментах — это ересь.

Вот, например, учебник, по которому меня учили в универе матану. Обратите внимание на его стоимость, блин!

Вот с какого хуя учебник по матану, который не менялся, поди, аж с Готтфрида Лейбница, стоит под триста монет, а? Меня учили по первому изданию этой книги, а не по девятому, так вот можно башку наотруб давать, принципиально внутри неё — ничего не изменилось. А? Чо? Купить бэушную книгу? А вот хуй тебе. Потому что внутри книги ещё есть уникальный код доступа к онлайн-сайту козлоиздателей, где ты будешь делать свою домашнюю работу. Домашнюю работу твою будет проверять вебсайт, а не преподаватель. Преподаватель он так… можно сказать, практически, для мебели.

Иногда (иногда) можно было купить бэушную книгу, и отдельно купить код доступа к сайту с домашней работой. Можно было таким образом сэкономить полтинник. Это сейчас мне полтинник в семестр это фигня. А когда я работал и учился, и платил за обучение сам, даже такие суммы были чувствительными. Зато кредитов выше крыши не набрал, закончил без долгов.

Так что теперь, когда все эти Сенгейджи, Пирсоны, и прочие Макгро Хиллы плачутся в сомбреро в стиле “да, мы охуели”, мой ответ — ИДИТЕ В ХУЙ. В жопу себе свои книжки запихните плашмя и проверните пару раз. Это в том числе и такие пидоры, как вы, создали эту систему, благодаря которой университетское обучение в США, пусть даже лучшее в мире, стоит так дорого.

Пора валить

По поводу американского среднего образования, увы, начинают сбываться мои самые большие опасения.

Ребёнок притащил домой контрольную работу (1й класс). В ней было вот такое задание:

Расставьте числа по порядку:

10, 2, 7, 5, 8

Дитя ответило:

10, 8, 7, 5, 2

Училка поставила “неправильно”.

Послал контрольную назад в школу с лаконичной запиской, грубо выражаясь, “вотзефак”.

Если ты имела в виду “расставьте числа по порядку возрастания”, так и надо было писать, а не сношать мозги, открывая простор для интерпретации.

Посмотрим, что ответит. “За рекой тревожно завыли псы” ©

А мне, тем временем, остро захотелось в Финляндию или ещё куда, где ещё не протянулись вонючие щупальца реформаторов преподавания математики.

Про советскую школьную реформу

В комментах к прошлому посту выяснилось, что не все знают, как СССР испортил преподавание математики в школах в 1970-1978 годах.

Самые худшие злодеяния совершаются, как известно, из самых лучших побуждений.

Группа инициативных советских математиков под руководством Колмогорова решила изменить как преподаётся математика в средних школах. Мол, мы живём во время науки и техники, а детей учим по дореволюционному учебнику Киселёва (что было сущей правдой — и мою бабушку, и моего отца учили именно по Киселёву).

Основная претензия маститых академиков к Киселёву состояла в том, что в его учебниках есть “неточности”, “допущения”, и что учебник “не является строго математически точным”. Что формально тоже правда. НО! Почему там были “неточности” и “допущения”? Что, кандидат наук Киселёв не знал математику? Разумеется, знал! Но главное отличие Киселёва от маститых академиков было в том, что в отличие от них, Андрей Петрович 20 с лихером лет преподавал математику в гимназиях и училищах. И именно потому, что он был Учителем, он знал, как именно нужно давать математику детям разных возрастов. Ведь ум ребёнка постоянно развивается — и вместе с ним его способности к пространственному воображению, абстрактному мышлению, и так далее. Если мы начнём фигачить в пятиклассника преподаванием на уровне университета, он ничему не научится.

Но академики пробили свою инициативу и решили, что им лучше видно, и начали писать свои учебники и портить киселёвские (особенно отличился на этом поприще некий Глаголев). В результате в учебниках математики и геометрии для средней советской школы появились абсолютно точные математически определения, доказательства и теоремы… абсолютно непонятные школьнику, ибо заумь.

Не буду голословным.

Все знают, что такое равные треугольники?

Вот доказательства того, что треугольники равны, если у них две одинаковые стороны, и одинаков угол между ними. Сначала — учебник 1980х Погорелова (по которому учили меня), а потом — Киселёв.

Ну чо, всё поняли? Я до сих пор нихера не понимаю. Луч, полуплоскость какая-то, и что меня добивает — иллюстрация якобы равных треугольников, явно не совпадающих друг с другом.

А теперь — умница наш Андрей Петрович Киселёв:

Вот тут всё предельно понятно, не так ли? Треугольники наложились и совпали? Конечно. И всё сразу ясно.

Но академики взъелись — чо тут? Какая это “точка”? Её правильно называть “вершиной!” И так далее и пошло-поехало. А то, что теперь эту заумь даже взрослый мужик не понимает — ну, не наши проблемы. В наших доказательствах и теоремах зато всё точно!!

И каков же был результат? Результат был АХОВЫЙ. В 1980х годах, казалось бы, в “золотые годы” советского образования стандартные задачки из дореволюционного задачника по математике решало вдвое меньше учеников. Я уж не говорю о гимназических контрольных — их вообще могли решать только школьники математических спецшкол.

Пример задачки для пятого класса: В классе 28 человек. Отношение числа девочек к числу мальчиков равно 4/3. Сколько в классе девочек?

В 1950м году её решило 83% пятиклассников. В 1995 — 37%!! То-есть, это вообще регресс, причём регресс абсолютный!

Спасибо вам, маститые академики, вы добились чего хотели — стало хуже. А советские школьные учебники теперь я вспоминаю исключительно матом.

Я бы хотел тут добавить “а зато в Америке….” но, увы, не могу. Американское школьное преподавание математики разломали ещё в 1960х (из тех же благих побуждений, ёпрст — они решили, что математику надо преподавать “лучше”, так как СССР обгонял США в космической гонке). А недавние инициативы “No Child Left Behind” и “Common Core” опустили планку обучения вообще ниже плинтуса. У меня и свояченица и тёща учители. О новомодных введениях, которые запустили ещё при Буше-младшем они говорят исключительно нецензурными словами.

Про американские школы

Одна из вещей в США, о которой у меня очень неприглядное впечатление — это американское среднее образование. Если не жить в местах типа Массачуссетса или Коннектикута, то образование будет на уровне бедных стран Латинской Америки.

Высшее образование — прекрасное. А вот среднее… Я не знаю, как сейчас, а когда я учился, то русское среднее образование было заметно лучше американского, даже несмотря на идиотскую школьную реформу 1970х. Я, безусловно, ходил не в очень простую школу, но ёлки-палки…

Особенно ярко это видно на некоторых примерах по преподаванию математики. Чтобы преподавать математику в американской школе, даже не надо иметь высшее математическое образование. Более того, часто случается так, что преподают не учитель, а заместитель (substitute). Он мало того, что не обязан иметь математическое образование — он может вообще не уметь ни читать ни считать. К нему вообще никаких требований — он заместитель. Бывает так, что заместитель может учить детей целый год. Например, учитель математики пенсионного возраста получил травму и решил выйти на пенсию — пока не найдут нового, учить будет заместитель. У моей дражайшей супруги математику так учил физрук целый год. Вся математика из этого периода для неё — некая чёрная дыра. Она не умеет самых элементарных вещей — например, построить график функции.

Вы можете себе представить выпускника советской школы (не двоечника, а минимум хорошиста), который не может построить график y = 2x, например? И я не могу.

И это мы ещё живём в городе, где одни из лучших школ в штате. Что творится в (гре)бенях — и представить жутко.

А теперь — слайды! Для нешпрехающих кратко перевожу.

Марти съел 4/6 своей пиццы, а Луис 5/6. Марти съел больше пиццы. Как такое возможно?

Ответ (совершенно правильный) — у Марти пицца была большего размера.
Ответ учителя — а вот нихера это не возможно, так как 5/6 больше 4/6.

Используя метод сложения, рассчитайте значение 5 * 3.

Ответ: 5 + 5 + 5 = 15
Ответ учителя: а вот неверно: 3 + 3 + 3 + 3 + 3! Перемена мест сомножителей? Нет, не слышали.

И наконец, вишенка на торте.

“Не пиши курсивом, ты в первом классе! Подожди до третьего класса”. Не выё…пендривайтесь, слушайте свои “Валенки”, ага.

Напляшемся мы ещё с этими школами.

Шпионские страсти

Профессора Калифорнийского Университета (Лос Анжелес) признали виновным в передаче военных микросхем китайцам. Согласно обвинительному заключению, профессор Йи-Чи Ши незаконно приобрёл военные микросхемы производства неназванной компании. Заполучив микросхемы, профессор переправил их в Китай. Теперь профессору светит нехилый срок до 219 лет.

Мои личные впечатления от учёбы в американских ВУЗах целиком подтверждают возможность подобного. У нас идёт утечка мозгов наоборот — китайцы постоянно приезжают сюда учиться. В университетах проводится огромная исследовательская работа по темам, которых ещё в учебниках нет. Китайские студенты тоже участвуют в этих исследованиях, а потом весь багаж полученных таким образом новейших знаний увозят назад в Китай. Постоянно такое видел. Своими собственными руками, получается, повышаем уровень потенциального противника.

Русская и американская математики

Повспоминал всякое, посмеялся. Я когда только начинал учиться в американском универе, тоже решал всё “по-русски”. За преподами было забавно наблюдать — “Это как? Это откуда ты написал? Ааа….” Т.е. требовалась пара секунд понять, что у меня всё правильно, просто подход другой.

Самое большое офигение вызвала моя запись деления в столбик. Я же в своё время офигел от того, как лихо местные раскладывают квадратные уравнения на множители. Нас так делать, конечно, тоже учили, но как-то не делали это основным способом решения квадратных уравнений. А тут сначала всегда пробуют разложить на множители, а только потом уже, если не получается, вставлять в формулу.

Но больше всего я офигел от т.н. “algebraic long division“, деления многочлена на многочлен. Нас такому вообще не учили, а тут это является стандартной операцией.