Дорисовал

Таки доделал програмку на Питоне, рисующую спектр сигнала и автоматически считающую КНИ+шум и ОСШ. Попутно узнал, как водится, много нового. За что люблю Питон — так это за то, что программа занимает менее 40 строк. На тех же Сях я бы усрался это рисовать. Даже на Шарпах бы усрался.

Программе скармливается звуковой файл с сигналом частотой в 1 kHz, сгенерированный программой Adobe Audition (в девичестве Syntrillium CoolEdit). Но можно взять и бесплатный Audacity, результат будет точно такой же. Программа читает файл, берёт значение с наибольшим пиком и даёт ему обозначение в 0 децибел. Остальное, соответственно, отрицательные величины. Подсчитывается среднеквадратичное значение всего, что не сигнал, и делится на уровень сигнала. Получается КНИ+шум (THD+N). Потом считаем ОСШ (отношение сигнал/шум, SNR) в децибелах: 20log10(сигнал / шум)

Вот так выглядит анализ звукового файла с сигналом 1 kHz, разрешением 16-бит, частота дискретизации — 48 kHz:

Это весьма близко к теоретическому идеалу — в идеале, разрешение 16 бит может дать ОСШ в 96.3 dB. Но у меня не идеал, так как я использую чуть менее, чем 16 бит — ибо если генерировать синусоиду с уровнем в 0 dB (т.е. по-максимуму), то почему-то уже лезут нелинейные искажения. Так что я создаю её с уровнем в -0.1 dB, минимальным отступлением от максимума, которое мне даёт делать Audition. В любом случае, 94 dB — это дохрена.

КНИ в 2 тысячных процента это тоже прекрасно. Без приборов этого никто никогда не увидит, искажения начинают быть слышимыми, когда уже вплотную приближаются к 1%, хотя это сильно зависит от того, что именно слушаем: если чистые синусоиды, то искажения начинают быть заметными гораздо раньше, а если в качестве тестового материала брать альбомы фифтисентов и прочих, то там можно и 10% искажений не услышать. Что не означает, что аппаратура, дающая КНИ в 0.05%, ничем не лучше аппаратуры, дающей 0.1% — она лучше; просто в реальности ушами этого ни один живой человек не услышит.

А теперь — снова пнём формат MP3 🙂 Никто как-то вот не задумывается о том, что они слушают в тысячедолларовых деревянных наушниках, подключённых к внешним усилителям класса А за семьсот долларов, обещающим КНИ в 0.00045%

А между тем это реалии MP3 с битрейтом в 192 килобита/сек:

А это — 320 килобит/сек:

Получше, конечно, чем 192 kbps, но всё равно проседание качества очень налицо — происходит серьёзное ужимание динамического диапазона (я в курсе, что ДД и ОСШ это не вполне одно и то же, но они связаны). На некотором материале (например, классическая музыка, обладающая большим динамическим диапазоном) это может быть очень заметно. На 192 килобитах так это точно заметно, тихая партия скрипки сопровождается скрежетом артефактов сжатия с потерями — собственноушно, так сказать, слышал. Дальнейшее увеличение битрейта после 320 килобит/с, кстати, уже ничего не даёт — ОСШ так и остаётся в районе 55 децибел.

Ещё надо будет попинать винилофильство и прочее плёнколожество, но это в другой раз 🙂

Отрицательная частота

Всё же как много я не знаю и не понимаю. Последний месяц-два изучаю методы измерения параметров качественности усиления звукового (и не только) сигнала.

Методов есть несколько, но про это в другой раз.

Основа в том, что чистый сигнал определённой частоты (например, 1 КГц) представляет собой синусоиду. Всё, что немного не синусоида, уже есть не чистый сигнал, а сумма сигналов, сумма синусоид. Даже меандр можно описать синусоидами — как функцию y(x) = sin(x) + sin (3x) / 3 + sin (5x) / 5 + .. + sin (nx) / n. Потому что меандр — это сумма синусоид основного сигнала и синусоид нечётных гармоник — то-есть, сигналов с частотой в 3, 5, 7 и так далее до бесконечности раз выше основной. Просто если речь идёт о звуковом сигнале, гармоники выше 19й слышны (как считается) уже не будут, так что меандр там получается не совсем полный, приблизительный.

Так вот если есть источник звукового сигнала, как узнать, насколько чистый там тон? Можно записать это в обыкновенный wav файл, а потом провести над полученным массивом данных математическое издевательство, называемое преобразованием Фурье. Пакетов для этого существует масса, можно взять бесплатный редактор Audacity, в нём есть спектральный анализ (преобразование Фурье это оно и есть).

Но, во-первых, я не ищу лёгкого пути, а во-вторых, мерять гармоники, долго их складывать и вставлять в формулу для расчёта КНИ я не хочу. Нехай электронный болван всё за меня считает, он на то и был куплен.

Так что нарисовал свою программу. Разумеется, на Питоне (на чём же ещё, не на Сях же рисовать). Благо есть модуль SciPy, в котором уже всё придумано, в том числе алгоритм быстрого преобразования Фурье (сиречь FFT).

Алгоритм FFT выдаёт гистограмму. По горизонтали — частота сигнала, по вертикали — его громкость. Примерно так слышит музыку человеческое ухо. Так вот выяснилось, что по умолчанию алгоритм выдаёт симметричную вокруг нуля герц картинку, то-есть, есть как положительная частота, так и отрицательная %) На этом месте я залип — как это, минус один килогерц?

Анализ файла с синусоидой 1 КГц выглядит так:

В принципе оно ведь логично — у синусоиды одна половинка имеет положительные значения от 0 до 1 (в военное время — до 4 =)), а другая — отрицательные, от 0 до -1. Соответственно, положительная частота — для того, что выше нуля, а отрицательная частота — для того, что ниже нуля. Правда, не совсем понятно, почему именно вот так — не было бы логичнее делать положительную и отрицательную амплитуды (громкости)?

Ещё менее понятным стало, когда я силой сгенерировал синусоиду с отрезанной верхушкой и сунул её в анализатор. Вот такую:

Я ожидал, что анализатор увидит туеву хучу гармоник с положительными частотами, и чистейший тон с отрицательными. Ан фиг — одни и те же гармоники были и слева и справа от нуля. Совсем непонятно, почему так. Вернее, конечно, понятно — сигнал это ВСЯ синусоида, от нуля до двух пи радиан, а не только её часть. Но тогда уже непонятно, зачем вообще городить огород с отрицательными и положительными частотами — не всё ли равно?

Плюнул, сменил алгоритм scipy.fftpack.fft на scipy.fftpack.rfft. rfft — это real fft, и отрицательных частот не выдаёт. Так намного понятнее.

Продолжаю изучать.

GPS v.Everything

“Когда модемы были большими”, и разговаривали друг с другом по телефонной линии, существовала туева хуча протоколов — v22, v32, v34, и так далее. Помимо общепринятых стандартов, были также фирменные стандарты отдельных производителей — так, до того момента когда все стали поддерживать v34, модемы Zyxel и USR, несмотря на наличие у них протоколов, позволяющих им передавать данные со скоростью 19 200 (Zyx19200) и 16 800 (HST, в дальнейшем разогнанный аж до 24 000) бод, могли общаться максимум на 14 400.

Закончилось это победой разума — USR выкатил свой Courier v.Everything, который поддерживал все стандарты (кроме чужих фирменных, разумеется), все стали поддерживать v34+, и проблема “модем-то у меня скоростной, но с тобой я могу пообщаться только медленно” исчезла. А потом и модемы-то практически ушли, хотя в отдельных ипостасях (факс-серверы) живут до сих пор.

Вся эта ситуация мне напоминает положение вещей с глобальным позиционированием. Сейчас существует четыре крупных систем глобального позиционирования — американский GPS, русский GLONASS, европейский Galileo и китайский BeiDou (японский QZSS не рассматриваем — это дополнение к GPS и работает только в Японии). И всё оно никак не взаимодействует между собой — приёмник GPS не умеет работать с Galileo и наоборот. Хотя мультисистемность более-менее появляется, чипы с поддержкой GPS и GLONASS я уже видел, даже в телефоны их ставят.

Однако выяснилось, что существуют чипы с поддержкой ВСЕХ систем позиционирования — эдакий Courier v.Everything в мире навигации. Это, например, u-blox M8, поддерживащий приём со всех четырёх созвездий спутников. Однако, одновременно оно может только в три созвездия из четырёх — что, в-общем-то, и так дофига, а если шибко надо ВСЁ — можно тупо взять ДВА чипа, благо они стоят меньше 8 долларов в партиях от 500 штук.

Фактически, таким образом можно обеспечить приём спутников так с сорока сразу. Интересно, даст ли это возможность получить точность позиционирования в сантиметры?

Про связь в экстренной ситуации

В очередной раз убедился в том, что во время каких-то бедствий современная техника абсолютно бесполезна.

У нас тут третьего дня перевернулся седельный тягач с цистерной с бензином. Слава Гефесту, не загорелся. Шоссе тут же перекрыли кибенемат, в обе стороны. Пытаюсь понять, что происходит, и как вообще теперь домой ехать. Достаю телефон. Видимо, та же идея пришла в голову всем остальным участникам дорожного движения, и башни были полностью перегружены — проходили только СМСки, и те с большой задержкой. Всё остальное не работало от слова “совсем”. В результате я узнал о происшествии только дома, по телевизору.

Так что воспользоваться сотовой связью во время каких-то происшествий будет просто невозможно. Мало того, что активность хотя бы в одну тысячу рыл (а это немного, учитывая площадь покрытия) гарантированно ставит башню раком, так ещё если вдруг отключится электричество, сотовые башни прослужат недолго. По закону, у них должен стоять ИБП/генератор, но срок их работы не будет превышать несколько часов — особенно учитывая многократно возросшую нагрузку.

А вот если бы в машине у меня была хотя бы СиБишка — можно было бы узнать у дальнобойщиков, что происходит.

Двухметровую антенну, что ли, в автомобиль воткнуть. Благо аппарат есть (и не один).

Паяльник с питанием от USB

О Гефест, теперь я видел всё.

Review: Aneng LT-001 USB Soldering Iron

Вообще непонятно, зачем надо было мучаться. Ведь кто-то разрабатывал эту муйню, тратил своё время. Хотя любому понятно, что продукт заранее мертворожденный — снять со стандартного порта USB достаточную мощность просто невозможно, придётся отжирать совершенно непотребный ток. Стандартный порт просто загорится. Именно поэтому во всяких хитрожопых стандартах типа мощного USB PD внутри этого самого USB не стандартные 5, а либо 12, либо 20 вольт — иначе сгорим-с.

Ожидаемо, автор обзора смог запаять этим паяльником только SMD компоненты. Всё прочее просто рассеивало тепловую мощность.

Лидар

Офигеть техника дошла.

Лидарный модуль с протоколом I2C, измеряет дистанции до 2 метров с точностью 3% (6 см).

https://www.indiegogo.com/projects/tinylidar-the-maker-friendly-laser-sensor-arduino#/

Используется инфракрасный лазер; так вот несложный расчёт говорит нам, что расстояние в 6 сантиметров свет пролетает за 0.2 наносекунды. Капец блин, техника, способная измерять доли наносекунд — в каждый дом. Стоимость одной платы составляет всего 15 долларов.

Скоро вообще на Али будут продавать какую-нибудь фигню, при помощи которой школьники будут играться с квантовой запутанностью.

Преобразователь постоянного тока, 1940е-стайл

Всё же как круто, что теперь у нас есть полупроводники. Электронной лампе для работы надо напряжение 6.3 вольта для накала, и 90-300 вольт — подавать на анод. В принципе, ничего сложного — благо трансформатор был изобретён в конце 19 века.

А вот как быть, если хочется радио на батарейках? Например, военный радиопередатчик? А транзисторов никаких нету и в помине, а есть только лампы, и надо, соответственно, 300 вольт?

Выкручивались, как могли. Для маломощных потребителей изготавливали ламповые инвертеры. Но для для более мощной техники использовали уже не их, а механические преобразователи постоянного тока, мотор-генераторы (умформеры). Принципиально это электрический мотор, крутящий генератор, который уже производит нужное напряжение и тип тока. Мотор-генераторы могут использоваться для конвертации переменного тока частотой 60 герц в ток частотой 50 герц, преобразования однофазного тока в трёхфазный, постоянного тока в переменный и наоборот и т.д.

Вот видео с работой и починкой умформера американской военной радиостанции ARC-5, устанавливаемой на самолёты ВМФ США во время Второй Мировой войны.

Мотор-генераторы успешно прожили на военной технике аж до 1970х годов, когда наконец появились полупроводниковые аналоги соответствующей мощности и надёжности, но на некоторой мощной технике (трамваи, электровозы, лифты) мотор-генераторы есть до сих пор. Также умформеры используются на производстве, когда надо преобразовывать десятки киловатт мощности с высокими напряжениями, нужна гальваническая развязка или особо чистый от помех ток.

Конечно, любое механическое решение будет иметь более низкий ресурс работы, будет иметь меньший КПД, и весить заметно больше, чем его полупроводниковый аналог. Но с другой стороны, ломаться ведь тут особо нечему, и кроме обслуживания трущихся частей умформер ремонта почти не требует (и ремонт этот очень прост). Ну, и, понятное дело, умформер вполне нормально переносит кратковременные перегрузки (которые легко убивают полупроводниковую технику), и мало чувствителен к помехам — что может быть важно для военной техники.

Теплое, ламповое

Электронные лампы, это, конечно, сложно. Намного сложнее, чем транзисторы. И преимуществ у них, в-общем, немного — более высокая устойчивость к перегрузкам и работе в совершенно кривых условиях, например. Также на лампах проще сделать усилители, где реально надо дофига ватт — например, выходные каскады усилителей коммерческих радиостанций. Про “лучший звук” мне не надо рассказывать — это не так. По объективным параметрам (КНИ) даже самые лучшие ламповые усилители не подходят близко к обычной транзисторной коммерческой продукции. Разве что уж совсем за невменяемые деньги. При этом я не утверждаю, что нет такой вещи, как “ламповый звук” — он есть. Просто это в основном связано с тем, что у выходного тракта усилителя на лампах довольно высокое собственное сопротивление. Что и отражается на звуке — выпячиваются частоты, близкие к собственному резонансу громкоговорителя. Чисто на слух это многим нравится; хотя если подходить объективно, с приборами — то это неточное воспроизведение оригинала. Подцепите последовательно с громкоговорителем резистор на 8-30 ом — получите тот же самый “ламповый” звук. Без всяких ламп.

Тем не менее, у ламп есть своя стойкая тусовка, которая готова тратить на это дело деньги. К их числу относятся, например, музыканты — ибо усилительная лампа в гитарном комбике работает в очень специфическом режиме, и наиболее музыкально искажает именно она, а не полупроводниковый аналог. Умом тронутых аудиофилов, которые слушают не музыку, а технику, воспроизводящую музыку, рассматривать не будем.

Поэтому есть и живы фирмы, которые до сих пор выпускают лампы. Скажем, те же радиолампы “Светлана”, которые производятся в России. Думаю, что процентов 80 этой продукции идёт на экспорт =)

Есть и западные фирмы. И, оказалось, есть фирмы, которые с нуля, в 21 веке, разрабатывают радиолампы!

Вот какая интересная вещь:


http://korgnutube.com/en/

Это, на минуточку, аж целый Korg, легендарные японцы.

Что в этой лампе интересного? Самое интересное в ней то, что по сути это вакуумно-люминесцентный индикатор (который тоже электровакуумный прибор). Такие, например, раньше в видеомагнитофоны и электронные часы ставили. Поэтому в ней нет того, что есть в обычных лампах — требований к высокому напряжению анода. Обычные радиолампы работают при напряжениях от 90 до 300 вольт. А эта может работать — та-дам — от 5 вольт до 90. Напряжение цепи накала в обычных лампах — 6.3 вольта, а тут 0.7!

А теперь плохое. Во-первых, эту хрень надо звукоизолировать и демпфировать, потому что оно обладает микрофонным эффектом. Во-вторых, если мы почитаем её даташит http://korgnutube.com/pdf/Nutube_Datasheet_31.pdf и сравним с даташитом идентичного по назначению сдвоенного триода 12AX7, то увидим, что усилитель из этой штуки выходит весьма хреновый. Степень усиления по напряжению всего 5! (для сравнения, у 12AX7 — до 71, правда, это при напряжении на аноде в 300 вольт). Конечно, это сдвоенный триод, так что можно один каскад подцепить к другому и получить усиление 25, но у слона 12AX7 всё равно больше.

Но зато на этой штуке не бздливо собирать усилитель. Мне, например, бздливо собирать усилитель для наушников, внутри у которого напряжение 300 вольт. Мало ли чего. Коротнёт на уши — и пойдёшь музыку вечно слушать. Я когда счётчик Гейгера собирал, меня пару раз от 400 вольт дёрнуло. Мало ни разу не показалось, хорошо там ёмкость маленькая была (0.22 мкФ).

А эта лампа наиболее перспективна, КМК, для гитарного комбика. Собрать на ней предусилитель, где все гитарные искажения будут тёплыми и ламповыми, а потом пускать их на полупроводниковый выходной каскад.