По совету ув. ny-quant попробовал использовать формулу x = r * x (1 – x) в качестве генератора случайных величин. Одного преобразования мне показалось мало, так что делал два кряду.
“В домашних условиях” проверить, качественная ли случайность не очень просто, надо вспоминать основы статистики и правильное применения хи-квадрата. Но есть неплохой способ — представить полученные значения в виде изображения. Если картинка выглядит шумом, то шансы на то, что значения действительно случайны, неплохи. Человеческий глаз очень неплохо натренирован на то, чтобы различать неслучайные узоры — миллиарды лет эволюции, чтобы издалека узнавать хищников или отличать ядовитых змей, даром не проходят.
Ну, как грица, pics or it didn’t happen.
Результат использования функции NumPy.random.random():
И результаты, полученные из двойного применения x = r * x (1 – x) с двумя разными значениями r:
Вообще — неплохо, должен признать.
Но если приблизить и рассмотреть детальнее, становится заметной разница. Справа — x = r * x (1 – x), слева — NumPy.random.random()
Как видно, x = r * x (1 – x) чаще принимает граничные значения, там много белого и много чёрного, и мало серого. Из-за этого, кажется, что есть узоры, как на булатной стали. Я не математик, но мне кажется, что большая равномерность является желательной.
Но вообще — для такой простой формулы должен признать, впечатляет.